

Process-Level Representation of Scientific Protocols with Interactive Annotation

Ronen Tamari, Fan Bai, Alan Ritter, Gabriel Stanovsky

Motivation

- > Scientific literature contains millions of unstructured natural language texts describing experimental material synthesis procedures ("recipes")
- > Vast potential for data-driven research
- > To date, methods have focused on text-mining applications

The next frontier: digital synthesis

- > Serious reproduceability concerns have raised the bar
- > The next frontier: convert textual descriptions to automated execution of experimental procedures!

Strateos cloud laboratory

The next frontier: digital synthesis

- > Serious reproduceability concerns have raised the bar
- > The next frontier: convert textual descriptions to automated execution of experimental procedures!

Prof. Lee Cro By digitising sy procedures, & synthesis on a 'synthesis cod	nin @leecronin · C ynthesis we will be be able to collabor repo before the pu e' could be required	Dct 5 able share ate widely Iblication. N d before pu	failed as - perhaps ⁄laybe va blication	well as successful s sharing a working lidation of the 4/5	000
Q 1	1] 1	\bigcirc	19	Ţ	

Text-to-experiment

- > Objective: parse texts into structured format for integration into automated workflows
- > Poses formidable challenges for current natural language understanding (NLU) systems:
 - Meaning representation (semantics)
 - Annotation
 - Modelling
 - Evaluation

Text-to-experiment

- > Objective: parse texts into structured format for integration into automated workflows
- > Poses formidable challenges for current natural language understanding (NLU) systems:
 - Meaning representation (semantics)
 - Annotation
 - Modelling
 - Evaluation

Why rethink semantics?

Can we just use text mining approaches?

"Although [text mining] approaches are useful for mining literature [...], we need a system that could output a machine-readable representation of a procedure with sufficient process details to unambiguously execute the procedure on an automated platform. This goes beyond simply tagging chemical entities found in literature procedures" Can we just parse directly into robot instructions?

"Automated platforms from different companies or research groups all have bespoke instruction sets with no obvious semantic link among them or to the literature. This broken link has prevented the digitization of chemistry"

(Mehr et. al, 2020)

Why rethink semantics?

Can we just use text mining approaches?

Hardware-agnostic representation as scaffold for execution Can we just parse directly into robot instructions?

Text-mining approaches

- > Action-graph semantics: shallow, sentence-level annotations
 - Biology: Wet Labs Protocols (WLP, Kulkarni et. al, 2018) 622 documents

Text-mining approaches

- > Action-graph semantics: shallow, sentence-level annotations
 - Biology: Wet Labs Protocols (WLP, Kulkarni et. al, 2018) 622 documents
 - Materials science: Materials Science Procedural Text Corpus (MSPTC, Mysore et. al, 2019) - 230 documents

Complex texts, require expert & common-sense knowledge

	1 Fixation of marine samples for flow cytometry sorting
	2 Prefilter seawater sample onto 200 µm mesh.
	Acts on Acts on Acts on Measure Modifier Mod Reagent Amt Measure Location 3 Add 1.5 mL of prefiltered seawater sample to a 2 mL cryotube.
	4 Add DMSO.
	Acts on Reagent 5 Add Pluronic (facultative).
	6 Vortex.
	7 Wait 10 min.
	8 Flash freeze in liquid nitrogen tank
WI P instance	

What's missing?

- > Inspiration from executable biology protocols research
- > Protocols as:
 - Computation graphs

Process-level representation: connected graph tracking operation inputs and outputs

Aquarium (Keller et. al, 2019)

What's missing?

- > Inspiration from digital synthesis research
- > Protocols as:
 - Computation graphs
 - Sequence of API calls

Typed operations

References as persistent objects rather than text spans

Action-graphs: limitations

Our proposal: Process Execution Graphs (PEG)

- > Process-level abstract executable representation
- > Bridges between procedural text and downstream automated workflows

PEG: Definitions

- > Directed, a-cyclic labeled graph
- > Ontology based on Autoprotocol

PEG: Definitions

- > Directed, a-cyclic labeled graph
- > Ontology based on Autoprotocol
- > Nodes
 - Predicates (mix, transfer)
 - Arguments
 - Physical lab entities (device, reagent, etc)
 - Abstract entities like amounts or modifiers

PEG: Definitions

- > Directed, a-cyclic labeled graph
- > Ontology based on Autoprotocol

> Edges

- Core-roles (~positional arguments)
- Non-core roles (predicate agnostic)
- Temporal dependency relation

Comparison with action-graphs

- > Fine-grained operation types
- > Cross-sentence relations
- > Argument re-use: arguments can be persistent objects
- > Enforcing required arguments

Annotation interface desiderata

- > Predicate specific execution semantics
 (container moves -> containee moves)
- > Tracking temporal dependencies and entity states over long texts
- > Argument validation

Too complex for span-based annotation!

PEG visualization in AMR using AMRICA (Safra & Lopez, 2015)

Text-based games as annotation interface

- > Convenient platform providing cheap interface
- > Suited for tracking and representing dynamic world state
- > We'll adapt it for annotation, too!

(Côté et al, 2018)

(Tamari et al, 2019)

Text-based games as intuitive annotation interface?

- > Procedures most naturally thought of as sequential execution
- > "Questification": maybe grounded annotations are easier for humans (and machines)?

Replying to @mark_riedl

In text games we call these things quests. Everything is a quest. It's fun to call everything a quest in the real world too.

000

Creating the dataset: eXecutable WLP (X-WLP)

- > Pre-populate PEGs with WLP entities and subset of within-sentence relations
- > Annotators enrich them by adding:
 - Type grounding
 - Argument labelling
 - Execution dependencies
 - Cross-sentence relations

PEG annotation process

- > Annotators interact with text-based game engine
- > Engine ensures semantic validity
- > Further provided assistance:
 - "Linter" for type checking
 - Autocomplete
 - Simple scoring to encourage annotating connected graphs

```
> op_type incubate to temp_type
Set operation type!
> op_run incubate
Failed: missing "ARGO" input for incubate!
> take culture_tubes
You pick up the culture_tubes.
> ARG
ARG0_assign culture_tubes to incubate
ARG1_assign culture_tubes to incubate
ARG2_assign culture_tubes to incubate
```

Demo

X-WLP stats

> 3 annotators, enriched 279/622 (45%) WLP protocols to PEG
format

X-WLP stats

- > 3 annotators, enriched 279/622 (45%) WLP protocols to PEG
 format
- > Comparable with other procedural text datasets

Table 5: Statistics of our annotated corpus (X-WLP), compared with the ProPara corpus [Dalvi et al.] 2018], material science (MSPTC; Mysore et al. [2019]) and chemical synthesis procedures (CSP; Vaucher et al. [2020]). CSP is comprised of annotated sentences (document level information is not provided)

	X-WLP (ours)	MSPTC	CSP	ProPara
# words	54k	56k	45k	29k
# words / sent.	12.7	26	25.8	9
# sentences	4,262	2,113	1,764	3,300
# sentences / docs.	15.28	9	N/A	6.8
# docs.	279	230	N/A	488

Quantitative analysis: annotator agreement

> Use Abstract Meaning Representation (AMR) format for established graph agreement metrics (Smatch, Cai & Knight, 2013)

Quantitative analysis: annotator agreement

- > Use Abstract Meaning Representation (AMR) format for established graph agreement metrics (Smatch, Cai & Knight, 2013)
- > Mean 84.99 F1 Smatch comparable to AMR datasets (69 89 F1)

	Agreement Metric	F1
nefits from underlying WLP	Smatch	84.99
annotations	Argument identification	89.72
	Predicate identification	86.68
ar range offen erees	Core roles	80.52
sentence relations	Re-entrancies	73.12

Quantitative analysis: operation arguments

> Simulator input validation prevents semantic underspecification, increases overall argument count per op.

Quantitative analysis: relation types

- > Significant proportion of arguments are re-entrancies (>30%)
- > Many cross-sentence co-reference relations (>90%) provide
 process-level structure

Relation	# Intra.	# Inter.	Total	# Re-entrancy
Core				
• ARG0	2962	952	3914	1645
• ARG1	560	127	687	3
• ARG2	84	123	207	77
Total (core)	3606	1202	4808	1725
Non-Core				
• site	1306	325	1631	360
• setting	3499	2	3501	-
• usage	1114	24	1138	<u></u>
• co-ref	129	1575	1704	
 iocated-at 	199	72	271	
• measure	2936	18	2954	(23)
 modifier 	1861	2	1863	2
 part-of 	72	65	137	20
Total (non-core)	11116	2083	13199	360

Qualitative Analysis: complex co-reference

> Many long-range metonymic co-references - what does "ligation mixture" refer to?

Modelling

- > Tried two approaches:
 - Standard pipeline model based on SciBERT (Beltagy et. al, 2019)
 - Multi-task: jointly learn to predict entire PEG. Based on DyGIE++ (Wadden et. al, 2019)

Modelling (1): Pipeline Approach

> Train model for each sub-task, chain together to obtain full
PEG

Legend: operation reagent location modifier

Modelling (2): Multi-task Approach

- > Adapted DyGIE++ (Wadden et. al, 2019) for our protocols
 - Used sliding window as length exceeded SciBERT 512-token limit

Results

1. Mention Identification

Data Split	System	F_1
original	Kulkarni et al. (2018) Wadden et al. (2019) PIPELINE	78.0 79.7 78.3

2. Fine-grained operation typing

System	Р	R	F_1
MULTI-TASK	75.6	68.9	72.1
PIPELINE	69.2	78.4	73.6
• w/ gold mentions	78.6	81.0	79.8

Results

3 + 4: Argument role labeling + temporal ordering (relation classification)

Task	MULTI-TASK	PIPELINE	# gold
Core			
All roles	59.2	49.1	2839
• All roles (gold mentions)	-	70.8	2839
• ARG0	62.0	52.2	2313
ARG1	39.4	28.9	412
• ARG2	70.7	57.4	114
Non-Core			
All roles	55.6	44.6	4827
• All roles (gold mentions)	-	72.3	4827
• site	60.5	52.5	962
• setting	77.4	62.7	974
• usage	35.0	29.5	297
• co-ref	41.2	30.8	1014
• measure	64.0	52.6	804
• modifier	50.0	42.4	519
 located-at 	13.4	10.5	179
• part-of	8.5	8.5	78
Temporal Ordering	60.3	49.0	1200
Temp. Ord. (gold mentions)	-	67.0	1200

Multi-task better on all relation-classification tasks, likely due to less cascading errors

Local (intra-sentence) relations easier to predict than cross sentence relations

Results: intra vs inter sentence relations

> For core-roles:

Split	MULTI-TASK	PIPELINE	# gold
Intra-sentence	63.3	55.6	2160
Inter-sentence	42.1	29.4	679

> For co-reference (92% are inter-sentence):

co-reference 41.2 30.8 1014

Cross-sentence relations ~ process-level information -> key challenge for modelling!

Future work: modelling

- > Text-based game format allows alternate approach predict instructions rather than predicting graph
- > Interactive semantic parsing setting allows executing instructions and utilizing intermediate game state as <u>context</u>.

Understanding protocols with context

Future work: improve interface

- > Reduce reliance on pre-existing annotations (e.g., allow creating new entities)
- > Ad hoc implementation, lots of improvements possible to facilitate more general applicability
 - Requires writing both Inform7 and Python, should require just one language...

Towards grounded procedural text

> Possible to obtain grounded annotations of long, complex real-world scientific texts- given the right framework!

Concluding remarks

- > Simulator improves data quality through questification &
 validation
- > Modelling results highlight interesting process-level
 inference challenges
- > New take on annotation: simulation rather than labelling
 - Facilitates new training, modelling and evaluation methods
- > Data and simulator to be released with camera-ready!

Questions?